Hidrolik presler ve çeşitleri kullanım alanları nedir

1 bar = 1 kg/cm² denktir
· Efektif Basınç: Manometrede okunan basınç değerine denir.
· Mutlak Basınç: Manometrede okunan basınç değerine bir atmosfer yaygın kullanımı hidrolik preslerde dir basıncı ilave edildiğinde meydana gelen basınç değeridir.

Şekil 1.1: Basınç yayılımı
Ø Paskal Kanunu: Yer çekimini ihmal edecek olursak, kapalı bir kaba etki eden kuvvetin sonucunda meydana gelen basınç, sıvı tarafından kabın her noktasına aynı şiddette etki eder. içindeki sıvının sahip olduğu toplam enerji, akım çizgisi boyunca aynıdır.
P1 x V 1=P 2 x V 2
P=Basınç (kgf/cm²)
V=Hız (m/s)
Ø Kovitasyon (Aşındırmak): Metallerin yüzeylerinden küçük parçaların kopartılmasıdır. Bu şekildeki malzeme tahribatı, bölgesel ve ani olarak meydana gelen basınç ve sıcaklık değişimlerinden kaynaklanır.
Şekil 1.3: Kovitasyon
Ø Hidrostatik Basınç: Bir kap içinde bulunan sıvı kütlesinin yükseklik, yoğunluk ve ağırlığına (yer çekimi ivmesi) bağlı olarak kabın tabanına yapmış olduğu basınçtır. Kabın şekline bağlı değildir.
P=h.d.g
P: Sıvının kabın tabanına yaptığı basınç (kg/cm²)
h: Sıvı yüksekliği (m)
d: Sıvı yoğunluğu (kg/m³)
g: Yer çekimi ivmesi (m/sn²)
Şekil 1.4: Basınç kapları
1.2. Hidrolik Sistemin Tanıtımı
1.2.1. Hidrolik Sistemin Temel Yapısı Mantığı ve Çalışma Kuralları
Elektrik motorunun tahrik ettiği hidrolik pompa ile akışkanın belirli basınçta ve debide basıldığı ve bu hidrolik enerji ile doğrusal, dairesel ve açısal hareketin üretildiği sistemdir.
1.2.2. Hidrolik Sistemin Avantajları ve Dezavantajları
Ø Hidrolik sistemlerin Üstünlükleri
· Hidrolik sistemler sessiz çalışırlar.
· Hidrolik akışkanlar, sıkıştırılamaz kabul edildikleri için titreşimsiz hareket elde edilir.
· Yüksek çalışma basınçları elde edilebilir.
· Hareket devam ederken hız ayarı yapılabilir.
· Akışkan olarak hidrolik yağ kullanıldığı için devre elemanları aynı zamanda yağlanmış olurlar.
· Emniyet valfleri yardımıyla sistem güvenli çalışır.
· Hassas hız ayarı yapılabilir.
· Hidrolik akışkan oluşan ısının çevreye yayılmasını sağlar.
· Hidrolik devre elemanları uzun ömürlüdür.
Ø Hidrolik Sistemlerin Dezavantajları
· Hidrolik akışkanlar, yüksek ısılara karşı hassastır. Akışkan sıcaklığının 500C’yi geçmesi istenmez.
· Hidrolik devre elemanları, yüksek basınçlarda çalışacağı için yapıları sağlam olmalıdır.
· Hidrolik devre elemanlarının fiyatları pahalıdır.
· Hidrolik devre elemanlarının bağlantıları sağlam ve sızdırmaz olmalıdır.
· Hidrolik akışkanların sürtünme direnci yüksek olduğu için uzak mesafelere taşınamaz.
· Depo edilebilirliği azdır.
· Akış hızı düşüktür. Devre elemanları, düşük hızlarla çalışır.
· Hidrolik akışkanlar havaya karşı hassastır. Akışkan içindeki hava gürültü ve titreşime yol açar, düzenli hızlar elde edilemez.
1.3. Hidrolik Devre Elemanları Yapısı ve Çalışma Özellikleri
1.3.1. Hidrolik Akışkanlar ve Özellikleri
Hidrolik akışkanlar, hidrolik gücün iletilmesinde kullanılır. İlaveten de hidrolik devre elemanlarının yağlanmasını ve soğutulmasını sağlar. Hidrolik akışkan olarak suyun kullanılmasında korozyon, kaynama noktası, donma noktası ve düşük viskozite gibi sorunlarla karşılaşılır. Bu sorunları ortadan kaldırmak için bazı karışımlar (yağ, glikol gibi) eklenir. Madenî yağlar, en çok kullanılan akışkandır. İçerisine katkı maddeleri eklenerek dayanıklığı ve kullanım süresi artırılır.
Resim 1.1: Hidrolik yağ
Ø Viskozite: Akışkanların akıcılık özelliklerini ifade eder. Yağların akmaya karşı gösterdiği zorluktur. Kalın yağlarda akmaya karşı direnç fazla, ince yağlarda akmaya karşı direç azdır. Kalın yağların viskozitesi yüksek ince yağlarda küçüktür.
Ø Oksidasyon: Hidrolik yağın bileşimindeki hidrokarbonların havanın oksijeni ile kimyasal reaksiyona girerek çamur veya sakız şeklinde tortuların meydana gelmesi olayına oksidasyon denir. Meydana gelen çamurlar, metal yüzeylerde korozyona neden olur.
Ø Yağlama Yeteneği: Uygun seçilen yağlar, metal yüzeylerde bir film tabakası meydana getirerek çalışan elemanların hareketlerinin kolaylaşmasını ve sürtünme direncinin azalmasını sağlar.
Ø Köpüklenme: Yüksek basınçtaki akışkan sistem içinde yüksek hızda hareket ederken hava molekülleri ile yağ moleküllerinin çarpışması sonucunda meydana gelen şoklar, köpüklenmeye yol açar. Bunu engellemek için boru hattında sızdırmazlık sağlanmalıdır. Yağ üreticileri, yağın içine köpüklenmeyi önleyici katkı maddeleri ilave eder.
Ø Akma Noktası: Yağın akıcılığını kaybedip katılaşmaya başladığı sıcaklığa denir.
Ø Alevlenme Noktası: Standart yağlarda alevlenme sıcaklığı 180ºC ile 210ºC arasındadır. Hidrolik sistemlerde 50 ºC’nin üzerine çıkılmadığı için herhangi bir problem çıkmaz.
Ø Polimerleşme: Birden fazla aynı cins yağ moleküllerinin artık vermeden birleşmesi ve yeni bir molekül meydana getirmesidir. Yağın özelliğini değiştireceği için istenmeyen bir durumdur.
1.3.2. Tank ve Özellikleri
Hidrolik akışkanı depolayan, çalışma şartlarına uygun şekilde hazırlayan devre elemanlarına depo (tank) adı verilir. Isınan hidrolik akışkanın kolayca soğutulması için deponun alt kısmı hava akımı oluşturacak şekilde dizayn edilmelidir. Depoya dönen akışkanın dinlenmeden emilmesini önlemek için dinlendirme levhası konulmalıdır. Depo kapasitesi, hidrolik sisteme gerekli olan akışkan miktarına ve dağıtım sisteminin büyüklüğüne göre seçilir. Pratik olarak pompa debisinin 3-5 katı kadar alınabilir.
Resim 1.2: Hidrolik tank (üstten görünüş)
Resim 1.3: Tank (önden görünüş)
Şekil 1.5: Hidrolik tankın iç yapısı
1.3.3. Hidrolik Boru-Hortum Donanımları
Hidrolik sistemlerde akışkanı tanktan alıcılara taşıyan ve alıcıdan tekrar tanka taşıyan elemanlardır. Hortumlar, hareketli hidrolik makinelerde hatların birbirine bağlanmasında kullanılır. Esneme kabiliyetleri yüksektir. Borular; dikişsiz, yüksek basınca dayanıklı çelikten imal edilir. İleride daha detaylı bilgi verilecektir. elemanlarda izin verilen kirlilik değerini üretici firmalar katologlarında belirtir. Mikron cinsindendir (1 Mikron= 0,001 mm’dir). Kirlilik değeri, kirlilik göstergesi kullanılarak ölçülmelidir. Burdan alınan değerlere göre filtre temizlenmeli ve kullanım ömrü dolanlar değiştirilmelidir.
Resim 1.4: Hidrolik filtreler
Filtreler üç ana gruba ayrılır:
Ø Emiş hattı filtreleri: Emiş hattında pompayı korumak amacıyla kullanılır.
Depodan hidrolik sisteme vermek amacıyla çekilen akışkanı temizler, sisteme temiz akışkan gönderir.
Depo içine yerleştirildikleri için bakımları zordur. Tıkandıklarında pompanın emişi güçleşir. Bu da basıncın düşmesine neden olur. Bu durumu engellemek için ilaveten

gövde gerektirmesidir. Bundan dolayı yapımı zor ve pahalıdır.
Şekil 1.6: Hidrolik pompa filtre devreleri
1.3.5. Pompalar
Tankta bulunan akışkanı, ayarlanan basınç ve debide sisteme gönderen devre elemanıdır. Pompalar, mekanik enerjiyi hidrolik enerjiye dönüştürür. Pompa, dönme hareketini elektrik motorundan alır. Pompalar basınç oluşturmaz. Akışkan sistemde bir engelle karşılaştığında basınç oluşur.

basınç borusunun havası alınmalı, emiş borusu hidrolik yağla doldurulmalıdır. Ayrıca yağ
seviyesi sık sık kontrol edilmelidir.

Hidrolik sistemde basınçlı akışkanın hidrolik enerjisini dairesel harekete dönüştürmek için kullanılan elemanlara "hidrolik motorlar" denir. Hidrolik motorlarla yüksek
basınçtaki akışkanları kullanarak büyük döndürme momentleri elde edilir. Küçük bir hacimle büyük momentleri üretmek mümkündür. Hidrolik motorlar; güçlü dairesel hareketin gerektiği iş makinelerinde, takım tezgâhlarında vb. yerlerde kullanılır. Hidrolik motorlarla kademesiz hız ayarı yapılabilir. Hareket devam ederken hız artırılıp azaltılabilir, dönüş yönü değiştirilebilir.

Hidrolik enerjiyi mekanik enerjiye çeviren devre elemanına hidrolik silindirler denir.
Hidrolik silindirler iki ana gruba ayrılır:
Ø Tek etkili silindirler: Basınçlı akışkan silindirin tek yönünden girip pistonun tek bir yüzeyine etki ediyorsa bu tip silindirlere tek etkili silindir denir.
Dönüşü, yaylı ve yaysız olabilir.
Resim 1.11: Tek etkili silindir
Ø Çift etkili silindirler: Basınçlı akışkan silindirin iki ayrı yerinden girip pistonun iki yüzeyine etki ederek ileri geri hareketleri akışkan gücüyle üreten silindirlerdir.
Resim 1.12: Çift etkili silindirler
Şekil 1.8: Çift etkili silindir prensibi
1.3.8. Valflerin Genel Sınıflandırılması
Hidrolik akışkanın akış yönünü belirleyen, akışkanın basıncını ve debisini istenilen sınırlar içinde tutan devre elemanıdır. Hidrolik valflerle aşağıdaki harfler ve konumlar kullanılır:
P: Pompadan gelen akışkanın bağlandığı yer
R, S, T: Depoya dönüş hattının bağlandığı yer
A, B, C: Silindir veya motora giden boruların bağlandığı yer
L: Sızıntı hattının bağlandığı yer.
X, Y, Z: Akışkanın uyarı sinyali olarak kullanıldığı pilot hattı.
Normalde açık: Valfe dışarıdan bir etki olmadan akışkanın önü P açık ve akışkan valfden geçerek bir elemana gidiyorsa bu tip valflere normalde açık valf denir.
Normalde kapalı: Valfe dışarıdan bir etki olmadan akışkanın önü P kapalı ve akışkan valfden geçemiyorsa bu tip valflere normalde kapalı valf denir.
Normalde açık Normalde kapalı bu hesaplamalarla ilgili detaylı dökümanlar hidrolik preslerin kullanımı ve yaygın pozisyonlarını daha net inceleye bilirsiniz tanınmış adreslerden biri örnegin www.ozkanpres.com

Şekil 1.9: Hidrolik valf sembolleri
Ø Yön kontrol valfleri: Hidrolik sistemde akışkanın istenilen yöne gitmesini sağlayan valflerdir. Valflerin kumandası elektriksel, mekanik, basınçla ve insan gücüyle kullanılabilir.
Resim 1.13: Elektro-hidrolik yön kontrol valfleri
Resim 1.14: Yön kontrol valfleri (elle kontrol)
Yönlendirme valfleri, konumlarının sayısına göre aşağıdaki gibi ifade edilir:
· 2/2 yönlendirme valfi
· 3/2 yönlendirme valfi
· 4/2 yönlendirme valfi
· 4/3 yönlendirme valfi
· 5/2 yönlendirme valfi
1.3.8.1. Basınç Kontrol Valfleri
Hidrolik sistemin elemanlarının basıncını kontrol ederek ayarlamak için kullanılan valflerdir.
Resim 1.15: Basınç kontrol valfleri
Kullanıldığı Yerlere Göre Çeşitleri düşük basınçla çalışacak devre elemanının girişine bağlanır. Normalde açık konumdadır, basınç yükselince kapanır. Basınçtaki düşme oranı, üstteki vida ile ayarlanır.
Resim 1.17: Basınç düşürme valfi
Şekil 1.12: Basınç düşürme valfi prensibi ve sembolü
Ø Basınç Sıralama Valfi: Hidrolik sistemde birden fazla silindir veya hidrolik eleman devreye girecek ve farklı basınçta çalışacak ise normalde kapalı

İletişim Formu

HİZMETLERİMİZ